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Abstract
Climate-driven changes in ocean temperatures, currents, or plankton dynamics may disrupt pelagic forage fish recruitment.

Being responsive to such impacts enables fisheries management to ensure continued sustainable harvest of forage species. We
conducted a management strategy evaluation to assess the robustness of current and alternative Pacific sardine harvest control
rules under a variety of recruitment scenarios representing potential projections of future climate conditions in the California
Current. The current environmentally informed control rule modifies the harvest rate for the northern sardine subpopulation
based on average sea surface temperatures measured during California Cooperative Oceanic Fisheries Investigations field
cruises. This rule prioritizes catch at intermediate biomass levels but may increase variability in catch and closure frequency
compared to alternative control rules, especially if recruitment is unrelated to ocean temperatures. Fishing at maximum
sustainable yield and using dynamically estimated reference points reduced the frequency of biomass falling below 150 000 mt
by up to 17%, while using survey index-based biomass estimates resulted in a 14% higher risk of delayed fishery closure during
stock declines than when using assessment-based estimates.
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Introduction
Small pelagic forage fishes provide the fundamental

ecosystem services of linking primary production to larger,
commercially desirable predator species and delivering es-
sential nutrients to predators and fisheries markets alike
(Pikitch et al. 2012, 2014). In 2020, forage finfishes directly
supported a 10.1 billion USD industry for global markets
(FAO 2022), and analyses by Pikitch et al. (2014) suggest
these fish provide supporting services as forage to harvested
predator species worth twice that value (roughly an addi-
tional 20.3 billion USD globally). Further, this global mar-
ket value is an underestimate as it does not account for
support services as bait for wild capture fisheries, recre-
ational and subsistence catch of forage fishes, nor as prey
for protected species like marine mammals and seabirds
(Pikitch et al. 2014, see also Konar et al. 2019). Because of
their importance for supporting higher trophic level species
and their respective population recoveries, many propos-
als to conserve forage stocks have been presented, though
predator reliance on harvested forage fishes may not ne-
cessitate full moratoria on these fisheries (Cury et al. 2011;
Kaplan et al. 2013; Koehn et al. 2017, 2021; Free et al.
2021).

Forage fish likely have complex and dynamic biological
properties that complicate observation and assessment of
stocks. A primary characteristic of forage species is large and
rapid population fluctuations in the absence of commercial
exploitation (Baumgartner et al. 1992; Schwartzlose et al.
1999; McClatchie et al. 2017; Salvatteci et al. 2018). These
boom–bust cycles can span multiple years and orders of mag-
nitude in terms of biomass (Chavez et al. 2003). Although
collapses can be exacerbated by fishing mortality, relatively
short lifespans and high reproductive output means that re-
cruitment success or failure drives these boom–bust dynam-
ics for most forage fish populations (Essington et al. 2015;
Szuwalski and Hilborn 2015; Checkley et al. 2017). Though
the exact drivers of recruitment in marine fishes continue
to be debated (Zwolinski and Demer 2014, 2019), ecological
theory, modeling, and observations suggest that this recruit-
ment variability is ultimately due to environmental factors
(Hjort 1914; Houde 1987; Cowan and Shaw 2002; Brosset et
al. 2020).

Despite their importance in the ecosystem, forage fish
life history characteristics make it a challenge to observe
and assess their population dynamics. Due to the migratory
and aggregation behavior of forage fishes, surveys must be
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extensive (e.g., Hewitt 1988) or make assumptions about
availability of fish to these surveys to estimate distribution
and density of stocks (Pitcher 1995; Zwolinski et al. 2011).
In the highly dynamic and productive systems in which
these fishes are found, many environmental factors influence
their distribution, growth, and survival (Jacobson and Mac-
Call 1995; Fiechter et al. 2015; Checkley et al. 2017), as well
as their detection by surveys (Zwolinski et al. 2011). While
many environmental influences on forage fish productivity
have been proposed (e.g., Rykaczewski and Checkley 2008;
Zwolinski and Demer 2014), few have been operationalized in
formal fisheries management frameworks. This in no small
part is due to the crucial requirement of an accurate and
predictable environmental index on which to base predic-
tions about future stock dynamics (Basson 1999). However,
advances in climate modeling have improved our ability to
project regional conditions at ecologically significant scales.
These advances, combined with modern computing capacity,
lay a path for long-term evaluations of forage fish stock dy-
namics in response to fisheries management decisions and
climate change.

Faced with this variability, the short life-cycle of forage fish
stocks, and their importance for human use and to marine
predators, fisheries managers rely on frequent pre-season
surveys (e.g., de Moor 2018) and (or) short-term projections
of forage fish biomass from modern stock assessment models
(e.g., Kuriyama et al. 2020) to make management decisions.
More recently, in setting harvest limits for forage fishes, man-
agers have also considered the foraging needs of predators
(Marshall et al. 2019; Anstead et al. 2021). These projections
typically take stock assessment models, fit to fisheries and
biological data, to project biomass values in the near term
(1–5 years; e.g., Kuriyama et al. 2020). Forecasts from stock
assessment models depend on relatively recent estimates of
biological processes like the stock–recruit relationship and
growth, with the assumption that these relationships will re-
main constant for a few years into the future. These projec-
tions are not made farther into the future as the stocks are
re-assessed regularly as part of the fisheries management pro-
gram (e.g., every 3 years in the case of Pacific sardine in the
US). However, 30–50 years into the future, there will likely
be different environmental conditions with corresponding
stock status and recruitment regime (e.g., Checkley et al.
2017). Climate-ready fisheries should assess whether current
management strategies will be robust to such changes (e.g.,
Haltuch et al. 2019a).

One proposed solution to the prospect of regime change is
to use dynamic reference points in determining stock status
for fisheries advice. Indeed, the concept of dynamic reference
points was first developed by MacCall et al. (1985) for for-
age fish. Unlike static reference points that assume station-
ary stock productivity parameters, dynamic reference points
are reflective of current environmental conditions. For ex-
ample, dynamic estimates of unfished biomass fluctuate over
time depending on temporal changes in productivity param-
eters. In comparing performance of static versus dynamic
reference points, recent simulation studies have found that
dynamic reference points can be a useful approach to con-
sider the impact of a variable environment in management

advice when the specific mechanisms linking the environ-
ment to productivity changes is unknown, although results
are species-specific and assume that the productivity change
can be correctly attributed to the environment rather than
fishing (Berger 2019; O’Leary et al. 2020; Bessell-Browne et al.
2022).

Simulations have also been employed to assess perfor-
mance of management strategies specific to forage fish. Siple
et al. (2019) investigated multiple harvest control rules (HCRs)
under various biological and observational uncertainties. For
three forage fish-like populations, they tested the perfor-
mance of rules that used constant exploitation over all stock
biomasses, as well as the harvest rule proposed by Pikitch
et al. (2012), which triggered reductions in exploitation at a
high proportion of unfished biomass. In their investigation,
Siple et al. (2019) evaluated performance of the Pikitch rule
that closed the fishery at 40% of unfished biomass, as well
as a rule with a more gradual decline in exploitation with
a fishery closure at 10% of unfished biomass. They found a
tradeoff among HCRs between rules that sought to stabilize
catch at low stock biomasses and those that maintained stock
biomass high enough to avoid fishery closure. This study
has improved understanding of best practices in managing
highly variable forage fish stocks. However, the robustness of
such management strategies to the effects of climate change
on these populations must be considered.

Pacific sardine (Sardinops sagax) have been a leading exam-
ple of the integration of environmental indicators into fish-
eries management decisions in the United States. In the Cali-
fornia Current, their productivity has been linked to oceano-
graphic conditions like curl-driven upwelling (Rykaczewski
and Checkley 2008), the Pacific decadal oscillation (PDO;
Zwolinski and Demer 2012), and sea surface temperature
(SST; Lindegren and Checkley 2013). For over two decades,
the northern subpopulation of Pacific sardine has been man-
aged with harvest levels determined with respect to the SST
in the southern portion of the California Current ecosystem
(PFMC 1998). The current harvest control rule adjusts fishing
effort for the advice year based on spring SST measured by the
California Cooperative Oceanic Fisheries Investigations (Cal-
COFI) program in the 3 years preceding the stock assessment.
In addition, Zwolinski and Demer (2012, 2014) have demon-
strated a potential relationship between PDO in the months
preceding and throughout sardine spawning, with eras of re-
cruitment failure coinciding with the colder phase of a 60-
year cycle in PDO. Yet debate continues as to the mechanistic
link between these environmental indices and northern Pa-
cific sardine stock recruitment because these relationships
between temperature, PDO, and recruitment have recently
broken down (McClatchie et al. 2010; Zwolinski and Demer
2019; Muhling et al. 2020). Recent work using a process-
based sardine age-structured model shows that the recent
collapse in Pacific sardine biomass was likely due to a de-
cline in food availability rather than shifts in temperature
(Koenigstein et al. 2022), though the interaction between
these drivers is complex and requires further investigation.
We must, therefore, consider the vulnerability of manage-
ment decisions to uncertainty in the assumed SST–sardine
relationship.
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Fig. 1. Conceptual figure of one iteration of the sardine management strategy evaluation (MSE) showing the operating model
(OM) and estimation model (EM) processes. The OM simulates biomass in each year y as a function of recruitment (Ry) and fishing
by the Mexican–Californian (MexCal) and Pacific Northwest (PNW) fleets in semesters 1 (July–December) and 2 (January–June).
In semester 1, an acoustic-trawl survey index (CCES index) is generated. Fleet data, the CCES index, and size compositions from
the survey and fleets from both semesters are sampled with error (dotted arrows) and input into the Stock Synthesis 3 (SS3)
EM, which estimates biomass up to year y – 1 and a 1-year forecast (year y). Forecast biomass (with assessment error) is used to
set total allowable catch (TAC) for year y using an HCR. This TAC is implemented without error and sets the year y catch used
in the OM for the following loop of the MSE simulation.

Management strategy evaluation (MSE) provides a method
of addressing the uncertainty in environmental stock dy-
namic linkages by testing the performance of decision rules
under a range of system dynamics (Punt et al. 2016a). In MSE,
natural processes are simulated in an operating model (OM)
that assumes a particular system structure and function, the
states of which can then be sampled and assessed with an
estimation model (EM). Simulated advice is generated given
the sampled data and EM output, and a simulated manage-
ment action feeds back into the OM to impact the system.
This MSE loop (Fig. 1) is iterated and performance of each
management strategy is then compared using output from
the simulation. An MSE analysis that evaluated performance
of alternative management rules for Pacific sardine over a
range of stock dynamics was used to select the current north-
ern stock harvest control rule (PFMC 2013; Hurtado-Ferro and
Punt 2014). With the advance of climate change, the histori-
cal recruitment relationships between the environment and
sardine underlying the past MSE analysis may not continue
to hold. Because forage fish population dynamics are sensi-
tive to changes in demographic processes, we must assess
whether the current SST-based harvest control rule, or any
rule, is robust to climate-driven changes in sardine recruit-
ment (ICES 2013). Here too, MSE provides a method in which
to test the robustness of these harvest control rules under po-
tential future climate-driven uncertainty (Siple et al. 2021).

We assess management performance of current and alter-
native harvest control rules to climate-driven recruitment

using an MSE of the northern sardine subpopulation. As
the response of sardine recruitment to climate change is
uncertain, we use multiple scenarios of future recruitment.
In addition to the current harvest control rule for Pacific
sardine, our analysis also considers rules proposed or applied
to forage fish stocks with the intention of maintaining their
stock at levels that support fisheries and marine predators
(Pikitch et al. 2012). As our analysis includes a simulated
stock assessment, it also enables quantification of the effi-
cacy and efficiency of statistical stock assessments for forage
fishes. We conclude with a discussion of the implications
of single-species management of sardine and other forage
stocks in a changing climate, and the importance of monitor-
ing indicators of recruitment of these ecologically integral
species.

Methods
The MSE was conducted using the SSMSE package (Doering

and Vaughan 2022) in R v4.0.2 (R Project Team 2022). SSMSE
uses Stock Synthesis 3 (Methot and Wetzel 2013) to model
population dynamics within the MSE loop (Fig. 1). The MSE
evaluated the performance of nine HCRs after 50 simulated
years under six recruitment scenarios, as described below.
Each combination of HCR and recruitment scenario was sim-
ulated 500 times to account for process error in recruitment
and observation error.
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Operating model
The OM has a similar configuration to the 2020 benchmark

stock assessment for Pacific sardine (Kuriyama et al. 2020)
developed in Stock Synthesis 3.30 (Methot and Wetzel 2013).
The OM had two semesters coinciding with the assumed
birthdate of sardine on 1 July. Semester 1 (S1) spanned
July–December and semester 2 (S2) spanned January–June of
the following calendar year (Fig. 1). There were three fishing
fleets, representing vessels that fish in waters off Mexico and
southern California (MexCal) during S1, another fleet in the
same region for S2, and a third fleet that fishes off the coast
of Oregon and Washington in S2 (Pacific Northwest). The
two MexCal fleets are used to account for differences in age
composition between the two semesters, with younger fish
caught in S1 and older fish caught in S2. The three fishery-
independent data sources all derive from the Southwest
Fisheries Science Center’s California Current Ecosystem Sur-
vey, which targets coastal pelagic species using a combined
acoustic-trawl method. They were (1) an acoustic-trawl survey
abundance index (CCES index, 2005–2019; e.g., Stierhoff et
al. 2020; Renfree et al. 2023), (2) daily egg production (DEPM,
2003–2014; e.g., Dorval et al. 2014), and (3) total egg pro-
duction (TEP, 2001–2014; e.g., Dorval et al. 2014). Marginal
age and length compositions were additional biological data
sources for the three fishing fleets and the acoustic-trawl
survey.

The OM differed from the benchmark assessment in that
it had a longer modeled time period, included DEPM and
TEP as additional indices of abundance, and estimated time-
invariant age-based selectivity and time-invariant growth
from marginal age and length compositions rather than us-
ing empirical weight-at-age. The OM modeled time period
was 2001–2019, whereas the benchmark spanned 2005–2019.
This longer time period was possible due to the inclusion of
the DEPM and TEP indices. Both egg production indices repre-
sented a measure of spawning stock biomass (SSB) and were
designed to survey small pelagic fish like sardine (Lo et al.
2005; Wolf and Smith 1985). The time-invariant age-based se-
lectivity can be thought of as fish availability to fishing or
survey gear. Growth estimation followed the Stock Synthesis
3 parameterization of a von Bertalanffy growth curve (Methot
and Wetzel 2013).

The OM is able to recreate observations of the 2001–2019
northern Pacific sardine stock and its fleets; we view this as
necessary if we are to use it as simulated “truth” in the MSE.
In the OM, some influential scaling parameters (steepness,
mortality, and catchability) were assumed to be fixed, while
the growth and selectivity parameters were estimated, con-
ditioned on data from 2001 to 2019. Catchability parameters
for the acoustic-trawl, TEP, and DEPM surveys were assumed
to be 1, 0.55, and 0.16, respectively. These parameter values
were estimated in previous versions of the sardine bench-
mark assessments. Natural mortality was assumed to be
0.585, and steepness assumed to be 0.6 (values also used in
previous assessments). Length-based selectivity was assumed
to be asymptotic and estimated from data from 2001 to 2019.
The age-based selectivity was estimated with the nonpara-
metric form (option 17 in SS3), which estimates a selectivity
parameter for each age rather than imposing a particular

form. Even without time-varying growth and selectivity, the
OM could reasonably represent historical biomass estimates
(Figs. S1 and S2). During the forward simulation from 2020
to 2070, all OM model parameters except for annual recruit-
ment deviates were kept constant to the values estimated
during the 2001–2019 conditioning period (Table S1). Future
recruitment deviates were generated differently for each of
the six recruitment scenarios to account for uncertainty in
future recruitment (see below; Table 1) and input into the
OM as a driver of the 50-year simulation.

Recruitment scenarios
We assessed robustness of management strategies to one

source of uncertainty: process error in future recruitment
(i.e., random recruitment variation, modeled as deviations
from a mean recruitment model). Future recruitment devi-
ations were generated differently for each of six recruitment
scenarios to account for uncertainty in future recruitment
(see below; Table 1, Fig. 2) and input into the OM as a driver of
the 50-year simulation. Three of these scenarios (Future SST,
Future PDO, and mechanistic, age-structured sardine popula-
tion dynamic (MICE)) integrated output from climate projec-
tions to drive future recruitment deviations in the MSE and
are considered the climate change effect scenarios. The remain-
ing three recruitment scenarios consider recruitment devia-
tions as shifting between high and low periods with no direc-
tional climate change effect imposed. These are considered
the no climate change effect scenarios.

Each of the six recruitment scenarios (Table 1) is forced
with log-normal recruitment deviations around a common
Beverton–Holt stock–recruit relationship defined in the OM:

R̂y = 4hR0SBy

SBy (1 − h) + SBy (5h − 1)
e−0.5byσ

2
R +R̃y(1)

The expected recruitment in year y (R̂y) is a function of
spawning biomass in year y (SBy), steepness (h = 0.6), recruit-
ment produced from an unfished stock (R0), recruitment vari-
ance (σ 2

R = 1.25), a bias adjustment fraction (by), and a nor-
mally distributed recruitment deviation (R̃y) (Methot and Wet-
zel 2013, Appendix A). To account for process error in each
recruitment scenario and sampling error, 500 random repli-
cates were evaluated for each scenario. These random draws
of recruitment deviations were kept consistent across HCRs.

Two recruitment scenarios without climate change effects
used built-in SSMSE options for projecting log-normal recruit-
ment deviations. The autocorrelated random recruitment
scenario sampled future recruitment deviations from a nor-
mal distribution of zero mean and standard deviation (SD),
σR, of 1.25 as in the conditioning period with annual auto-
correlation of ρR = 0.678. This level of autocorrelation was
that of recruitment deviations from the conditioning period.
The second scenario was developed to represent a shift from
the current low recruitment regime to a high recruitment
period after 25 years. In the first low recruitment period, re-
cruitment deviations were sampled from the same normal
distribution as the first scenario but without autocorrelation.
Then, a bias adjustment was applied to the mean of the re-
cruitment deviations starting in projection year 2045 to sim-
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Table 1. Recruitment scenarios. R̃y are the log-normal recruitment deviations for year y in the forward MSE simulation.

Scenario Description Formulation Reference

Autocorrelated
recruitment

Random normal recruitment deviations
with the same mean and standard
deviation used in the conditioning
period and autocorrelation at
ρR = 0.678

R̃y = ρR × R̃y−1 + R̂y Methot and Wetzel (2013)

R̂y ∼ N

(
μhist = 0,

σhist√
1/(1−ρ2

R )

)
See eq. in Maunder and Thorson

(2019)
ρR = 0.678, σhist = 1.25

Regime
recruitment (low
to high)

Random normal recruitment deviations
with the same mean and standard
deviation used in the conditioning
period for the first 25 years of the
simulation, then switching to
deviations with a mean = 1 thereafter

R̃y = R̃y−1 + R̃y Kuriyama et al. in review

R̂y ∼ N
(
μy, σhist

)
μy =

⎧⎨⎩ μhist = 0, y < 2045

μhigh = 1, y ≥ 2045

σhist = 1.25

Cyclic PDO Recruitment deviations are calculated as
random normal deviates around the
mean PDO index derived from fitting a
60-year cycle to historical PDO data

R̃y = η(R̂y × 0.44 + εt × 0.56) Zwolinski and Demer (2019,
2014)R̂y = sin (2πt/60)

η = σOM/σROMS PDO = 1.25/0.714

εt ∼ N(0, σOM)

Future PDO As in the cyclic PDO index, but the
combined mean PDO index is derived
from bias adjusted ROMS climate
projections.

R̃y = η(R̂y × 0.44 + εy × 0.56) Zwolinski and Demer (2019,
2014)R̂y = 0.7815xROMS PDO, y

η = σOM/σ PDO = 1.25/0.763

εy ∼ N(0, σOM)

Future SST Recruitment deviations are calculated as
random normal around the difference
between annual CalCOFI region SST
regression term and the regression
term using the average historical SST.
Annual CalCOFI SST is derived from
bias adjusted ROMS climate
projections

R̃y = η(R̂y × 0.55 + εy × 0.45) PFMC 2013, Appendix H

R̂y = 1.28xSST, y − 1.28xSST

η = σOM/σ SST = 1.25/0.699

εy ∼ N(0, σOM)

MICE ensemble
recruitment

Recruitment deviations are residuals
from a Beverton–Holt stock–recruit
relationship fit to abundance-at-age
output from a mechanistic sardine
population dynamics model averaged
over nine model structures and three
climate projections. Fit residuals are
scaled to match the variation of
historical deviations in the OM model

R̃y = η(R̂y × 0.7 + εy × 0.3) Koenigstein et al. (2022)

R̂y = RMICE, t − aSBy−1/
(
b + SBy−1

)
a = 2.7 × 109

b = 1.3 × 105

η = σOM/σMICE = 1.25/0.421

εy ∼ N(0, σOM)

Note: Scenarios in bold are those that integrate climate change effects. MSE, management strategy evaluation; PDO, Pacific decadal oscillation; SST, sea surface tempera-
ture; CalCOFI, California Cooperative Oceanic Fisheries Investigations; OM, operating model; ROMS, regional ocean modeling system; model of intermediate complexity
for ecosystem dynamics (MICE), mechanistic, age-structured sardine population dynamic.

ulate an upward shift in mean recruitment. This bias adjust-
ment reflects the difference in the mean of early (1981–2000)
and late (2001–2019) recruitment deviations estimated in the
original conditioning of the OM model, characterizing eras of
high recruitment and stock biomass, followed by recruitment
failure and fishery collapse. In all recruitment scenarios, re-
cruitment deviations were generated independently for each
scenario replicate, but were applied similarly across HCRs
within recruitment scenarios to ensure comparability.

The remaining recruitment scenarios assume that some of
the variability in recruitment deviations can be explained by
an environmental covariate (CV) according to the equation
below:

R̃y = r2 ∗ eβV + (
1 − r2) ∗ eεy(2)

where β is the effect of the environmental covariate V on re-
cruitment via the larval/juvenile fish mortality rate (Maunder
and Thorson 2019). The r2 determines what proportion of

the yearly recruitment deviations (R̃y) is generated by the
environmental CV and what proportion is explained by a
random error (εy), where εy is drawn from a random normal
distribution with mean 0 and SD of 1.25. In the SST and
PDO scenarios (see below), this proportion was assumed
to be the r2 from the study in which the relationship was
estimated, and the deviance explained by the MICE ensemble
(see below) was assumed to be r2 = 0.7, following Siple et al.
(2019). To ensure continuity of recruitment variance, the SD
of the total recruitment deviations (environmentally driven
effect + random) in environmentally driven scenarios were
scaled to the historical SD (σR = 1.25).

The third no climate change effect scenario assumed
that recruitment deviations around the mean stock–recruit
relationship were a function of the PDO index described by
Zwolinski and Demer (2019). This scenario fit a 60-year cycle
to historical PDO data (https://www.integratedecosystemass
essment.noaa.gov/index.php/regions/california-current/cali
fornia-current-iea-indicators) using a sine link function as
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Fig. 2. (A) Example time series of age 1+ biomass and (B) recruitment deviations generated by the operating model for each
recruitment scenario. Median (black line, panel A), individual iteration time series (gray lines), and three randomly sampled
time series with matching colors are shown. The biomass cutoff threshold value relevant for management (flat red line, panel
A) is shown at 150 000 mt. The break between the model conditioning and projection periods is also shown at 2019 (vertical
dashed lines).

the CV effect on the deviations (Zwolinski and Demer 2014).
The corresponding recruitment scenario incorporating cli-
mate change effects on Future PDO was calculated using
the projected PDO monthly index time series averaged over
three earth system models (Pozo Buil et al. 2021) and then
bias adjusted, so the mean of the earth system model ensem-
ble historical period (i.e., 1976–2020) was equal to that used
in the fitting of the PDO–recruitment relationship. The fifth
recruitment scenario (Future SST) was calculated using a sim-
ilar approach but used the relationship between recruitment
and annual SST in the region of the CalCOFI hydrographic
and plankton survey (Hurtado-Ferro and Punt 2014). This
scenario used the SST–recruitment function defined in the
Pacific Fishery Management Council (PFMC) documentation
to identify the environmental HCR currently used to manage
the stock (PFMC 2022). The CV effect on the deviations in this
scenario was calculated as the difference between the SST
effect in year t and the mean SST effect over the years used to
fit the original environmentally informed stock recruitment
relationship and temperatures projected from the same
global climate models as in the Future PDO scenario.

The sixth and final recruitment scenario derived re-
cruitment deviations from an ensemble of MICE models
(Koenigstein et al. 2022). This ensemble has finer resolu-
tion of early life stage dynamics and used mechanistic
relationships with environmental drivers to drive variation
in egg production and larval survival. These mechanistic

models were calibrated to provide similar biomass trends
over the conditioning period as the Stock Synthesis model
on which the OM for this study was based (Koenigstein et
al. 2022). However, models in the MICE ensemble do not
have a stock–recruitment relationship as used in the OM
model formulation. Recruitment was instead a result of
explicitly resolved early life stage survival processes driven
by temperature, food availability, ocean transport, and
food-driven egg production, as well as density-dependence
feedbacks (Koenigstein et al. 2022). Therefore, we fit a sep-
arate Beverton–Holt stock–recruit relationship using the
MICE ensemble mean abundance of late-stage age 0 fish as
the response variable (recruits) and SSB calculated as the sum
product of the MICE ensemble mean abundance of ages 1 to
8 fish, the mean weight-at-age, and the mean maturity-at-age
keys from the sardine stock assessment:

SSBt =
8∑

a = 1

Na, twama(3)

where Na,t was the abundance at age a at time t, wa was
mean weight at age a, and ma was mean proportion mature
at age a. The recruitment deviations in this scenario were
calculated as the difference between the MICE ensemble
recruit abundance at time t and the maximum likelihood es-
timate of expected recruitment from the fitted stock–recruit
relationship.
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Environmental CVs are required for the Future SST, Fu-
ture PDO, and MICE ensemble scenarios. These were de-
rived from a regional ocean modeling system (ROMS) for
the California Current ecosystem that provided downscaled
projections from three earth system models using the In-
tergovernmental Panel for Climate Change emissions sce-
nario RCP 8.5: the Geophysical Fluid Dynamics Laboratory
(ESM2M), Hadley (HadGEM2-ES), and Institut Pierre Simon
Laplace (CM5A-MR) climate models (Pozo Buil et al. 2021).
These downscaled ROMS-projected time series included SST
within the CalCOFI survey area for the Future SST scenario
and SST and food availability (nanophytoplankton and mi-
crozooplankton) over early life stage habitat, and food avail-
ability (diatoms, mesozooplankton and krill) over adult habi-
tat for the MICE ensemble scenario (see Koenigstein et al.
2022). Projections for the Future PDO were computed directly
from the three earth system models. The projected time se-
ries were model averaged annually and used as CVs in our
recruitment scenarios.

Estimation model
Integrating an EM within the MSE loop (Fig. 1) allows for

an assessment of HCR performance considering observation
and assessment error, in addition to recruitment uncer-
tainty. The EM structure was similar to the OM model, but
as in the current sardine assessment (Kuriyama et al. 2020),
the EM was fit to fishery and CCES index data starting in
2005 rather than from the 2001 OM start date. Unlike the
OM, which fixed all parameters during the forward MSE
projection period, the EM estimated growth and recruitment
parameters given data with error sampled from the OM. To
reduce convergence issues, selectivity was not estimated and
assumed at values equal to the parameters in the OM. At
each time step of the simulation, catch, CCES biomass index,
and size composition data were sampled with error from the
OM (based on the current 1-year stock assessment frequency
for Pacific sardine) and input into the EM. Data for input into
the EM were generated within SSMSE using Stock Synthesis
bootstrap capabilities that generate new datasets of random
observations using the same variance properties (standard er-
ror of fleet specific catch, standard error of the CCES biomass
index, and effective sample size of the size composition data)
and error structure (log-normal for catch and CPUE, multino-
mial for the size composition data) assumed during the OM
conditioning phase. The composition samples had assumed
sample sizes approximately equal to their mean during
the conditioning period, while the CCES index and catches
were sampled with CVs of 0.25 and 0.05, respectively. We
found that using this observation error generated reasonable
assessment errors while minimizing convergence issues (see
Estimation Model Fit). Convergence was defined as a maximum
gradient of the objective function less than 0.01. Because of
the nature of the SSMSE simulation software, non-converged
assessments still informed management within the MSE
loop, but all assessment error statistics were calculated with
assessment output from converged EM models only (see
Performance Metrics below). As under current management,
the EM (i.e., simulated assessment) was used to forecast age

1+ biomass at the start of the upcoming fishing seasons to
set the total allowable catch (TAC) as determined by one of
nine harvest control rules (Fig. 3). Considering the 50-year
simulation period and the 1-year stock assessment frequency,
this resulted in 50 rounds of EM fitting for each iteration and
HCR.

The EM successfully converged in 94.5% of 700 000 simu-
lated assessments (one assessment per year for 50 years ×
500 replicates × 7 EM-based HCRs × 4 recruitment reference
scenarios). Relative assessment error for year y was calculated
as the percent difference in age 1+ biomass estimated by the
EM relative to the age 1+ biomass projected by the OM:

REy = B̂EM
y − BOM

y

BOM
y

× 100

For any single EM fit, the terminal (final) year of the assess-
ment tended to underestimate age 1+ biomass relative to the
OM. Since there is no assessment under the index-based HCR,
the relative “assessment” error for that rule was computed as
the difference between the stock biomass as estimated by the
CCES index and that from the OM:

REy = BIndex
y−1 − BOM

y

BOM
y

× 100

Note that the latest available summer acoustic-trawl survey
occurs 1 year before the harvest guideline is implemented,
so the CCES index-based biomass is compared to the OM
biomass in the following year. See Estimation Model Fit and Har-
vest Control Rule Performance in the Results section for further
discussion of the EM assessment error.

Harvest control rules
Deroba and Bence (2008) summarize features of harvest

control rules, which we generalize here in Fig. 4. In its sim-
plest form, an HCR defines a precautionary target exploita-
tion rate (Etarget) that is constant over all stock biomass lev-
els. Alternatively, Etarget can vary through time, for example,
based on an environmental indicator as in the sardine SST-
based HCR implemented by the PFMC (PFMC 2022). Further-
more, at low biomasses, exploitation can be reduced to 0
to preserve spawning potential at the cost of annual catch.
The biomass reference point at which exploitation is set to
0 (Blimit) determines when the fishery closes, as well as the
slope of the HCR between exploitation rates of 0 and Etarget.
As Blimit moves closer to the biomass at which Etarget is trig-
gered (Btrigger), the slope of the HCR increases along with the
proportion of preserved biomass and variability in catch. The
extreme case where Blimit = Btrigger, termed a threshold or
“bang-bang” HCR (sensu Deroba and Bence 2008), results in
high catch variability as the fishery closes completely with
slight variation in stock biomass. At the right of Fig. 4, the
implementation of a maximum catch cap reduces exploita-
tion above some bonanza stock biomass (Bbonanza, i.e., a level
of exceptionally high biomass; Siple et al. 2019) and reduces
variability from high catches. A maximum catch was imple-
mented in all HCRs tested in this study.
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Fig. 3. Example time series of age 1+ biomass (A) and total catch (C) for each of the HCRs, recruitment deviations (B), and
relative error of the terminal estimate (D) for an iteration of the MICE recruitment scenario. This example depicts modeled
variation in biomass (and catch) under the nine HCRs, with stock declines (A) dependent on recruitment variation (B) and
catch (C). Note the different y-axis limits in A and C. Age 1+ biomass is plotted alongside the 150 000 cutoff and 50 000 collapse
thresholds (red horizontal lines) in panel A. Years of poor recruitment (deviations <−1.25) are indicated with black points in
panel B. The 200 000 mt MAXCAT catch limit is shown in grey in panel C. Relative error in terminal year biomass (solid line) and
CCES index data provided to the estimation model (open squares) from the PFMCFSST HCR application to the same iteration
are compared in panel D. All lines in A and C overlay in the historical period.

Nine harvest control rules (Table 2, Fig. 5) were tested in
each recruitment scenario. Since sardine biomass dynamics
are highly variable even with no fishing, the first HCR en-
acted zero catch over the projection period (NoCat). The next
two HCRs (PFMCF018 and PFMCFSST) tested the current rule
used in the fishery, which defines a threshold rule with zero
catch under a precautionary age 1+ stock biomass cutoff
(BCutoff = 150 000 mt), and catch proportional to age 1+ stock
biomass (B) at higher biomass according to an annual ex-
ploitation rate, Ey, until a maximum catch limit (MAXCAT)
of 200 000 mt (PFMC 2022):

Total Catchy = min
((

By − BCutoff
) ∗ Ey ∗ Dist, MAXCAT

)
(4)

where Ey is the annual exploitation rate, Dist is the propor-
tion of the sardine stock distribution in US waters (assumed
to be 0.87), and min() indicates that when MAXCAT < (By −
BCutoff) ∗ Ey ∗ Dist, the MAXCAT is provided as the total catch
advice. This catch advice applies to the year y following the
year of the assessment (Fig. 1), thus By is the biomass forecast
by the assessment for the beginning of the upcoming fish-
ing year (PFMC 2022). First, we tested a version of this HCR
with a stationary exploitation rate set to maximum sustain-
able yield (EMSY = 0.18) as estimated by Hill et al. (2011, Ap-
pendix 4). The second version of this rule emulated the HCR
currently applied to the northern sardine stock and modified
Ey as an approximately linear function of SST as defined in

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

69
.1

81
.1

03
.1

07
 o

n 
12

/0
5/

23

http://dx.doi.org/10.1139/cjfas-2023-0169


Canadian Science Publishing

Can. J. Fish. Aquat. Sci. 00: 1–23 (2023) | dx.doi.org/10.1139/cjfas-2023-0169 9

Fig. 4. Conceptual guide mapping performance metrics to harvest control rule shape following Deroba and Bence (2008). A
target exploitation rate (Etarget) chosen below some limit rate (Elimit) ensures precaution. A constant Etarget over stock biomasses
encourages low catch variability, while changes in this rate over time increase catch variability. Reducing the exploitation rate
below some threshold or “trigger” stock biomass (Btrigger), and potentially closing the fishery below a biomass limit (Blimit) trades
off consistency in catch to preserve spawning potential. Increasing the level of Btrigger or Blimit leads to more catch variability
and more frequent fishery closures. Implementing a maximum cap on catches reduces average catch, variation in catches, and
reduces the exploitation rate during bonanzas (periods of high stock biomass).

Table 2. Description of harvest control rules.

HCR code HCR Description Reference

NoCat No Catch Control run with zero catches

PFMCF018 Current HCR but with fixed EMSY Broken stick with current CUTOFF and MAXCAT and
exploitation rate set to 0.18

Hill et al. (2011),
Appendix 4

PFMCFSST CalCOFI SST EMSY (current) Exploitation rate is modified as a function of the 3-year
mean of CalCOFI sea surface temperature

PFMC (2022)

ConstF Constant exploitation A constant E = 0.18 is applied throughout the projection
period, but MAXCAT still applied

Index Index-based Threshold rule as in PFMCF018 applied to simulated CCES
index in the assessment year (y − 1)

Pikitch Pikitch forage rule with Etarget
set to 0.18

Broken stick with Blimit of 0.4B0, Btrigger of 0.8B0, and
Etarget = 0.18

Pikitch et al. (2012)

40-10 40-10 rule Broken stick with Blimit of 0.1B0, Btrigger of 0.4B0, and
Etarget = 0.18

PFMC (2016)

DynPik Dynamic Pikitch Same as Pikitch rule but with dynamic B0 Berger (2019)

Dyn40-10 Dynamic 40-10 rule Same as 40-10 rule but with dynamic B0 Berger (2019)

the PFMC’s Coastal Pelagic Species Fishery Management Plan
(PFMC 2022):

ESST = 0.248649805 T2 − 8.190043975 T + 67.45583262(5)

where T is the 3-year annual mean SST over the CalCOFI
survey region. This temperature-based HCR functioned sim-
ilarly to the one currently applied to the northern stock by
the PFMC. These HCRs were compared to a fourth HCR (Con-

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

69
.1

81
.1

03
.1

07
 o

n 
12

/0
5/

23

http://dx.doi.org/10.1139/cjfas-2023-0169


Canadian Science Publishing

10 Can. J. Fish. Aquat. Sci. 00: 1–23 (2023) | dx.doi.org/10.1139/cjfas-2023-0169

Fig. 5. Example of the HCR forms used for the management strategy evaluation in this study. All HCRs (except the ConstF
rule) increase from an exploitation rate of 0 at low biomass to an Etarget defined by each rule. The PFMCF018, ConstF, Pikitch,
and 40-10 rules have an Etarget = 0.18. The PFMCFSST rule ranges from Etarget = 0.05 at low temperatures to Etarget = 0.20 at
higher temperatures. The Blimit and Btrigger values used in the Pikitch and 40-10 rules are calculated as a proportion of the
unfished biomass (B0, vertical grey dotted lines). In the dynamic versions of this rule, the estimate of B0 may vary throughout
the simulation. Note that horizontal portions of HCR lines are slightly shifted here to improve visualization of each rule.

stF), which was the same as the PFMC EMSY HCR (PFMCF018)
but without the cutoff at low biomass. Thus, it implemented
a constant exploitation rate for maximum sustainable yield
(EMSY = 0.18) up to the MAXCAT catch limit. A fifth HCR
(Index) applied eq. 4 with EMSY = 0.18 to an index value of
By − 1 estimated from the summer CCES index in the assess-
ment year (y − 1) rather than the Stock Synthesis model-based
biomass forecast for the upcoming fishing year y. For this
rule, catchability was assumed to be 1, assuming that the
CCES index is an absolute index of abundance.

The next set of HCRs (rules 6–9) took the form of bro-
ken stick rules that were developed in the fisheries manage-
ment literature to apply more generally to other forage fish
and groundfish stocks. The sixth rule (Pikitch) was derived
from Pikitch et al.’s (2012) simulation study and tests a rule
with Ey = EMSY when SSBy is ≥ 0.8 ∗ SSB0 up to the MAXCAT
limit, where SSB0 is the estimated unfished spawning stock
biomass. Ey is 0 if SSB falls below SSBlimit = 0.4 × SSB0. At in-
termediate levels of SSBy, the Pikitch HCR applied a decreas-
ing exploitation rate:

Total Catchy =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MAXCAT, 0.18By ∗ Dist > MAXCAT

0.18By ∗ Dist, SSBy−1 > 0.8SSB0

0.18By ∗ (
SSBy−1 − 0.4SSB0

) ∗ Dist

0.8SSB0 − 0.4SSB0
, 0.4SSB0 < SSBy−1 < 0.8SSB0

0, SSBy−1 < 0.4SSB0

(6)
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The seventh HCR (40-10) followed the 40-10 rule used in
management of groundfish off the US West Coast (PFMC
2016). It was the same as the Pikitch HCR, but applies a
biomass limit of SSBlimit = 0.1 ∗ SSB0 and an upper threshold
biomass corresponding to 0.4 ∗ SSB0. The final two HCRs
(DynPik and Dyn40-10) applied the Pikitch rule and 40-10 rule
with EMSY but used dynamic reference points with respect
to SSB0 (Berger 2019). Dynamic SSB0 is the unfished biomass
that fluctuates through time given changes in productivity,
such as recruitment. In the EM, it varies annually and is
estimated in Stock Synthesis by running the population
trajectory with the exploitation rate set to 0 and all the other
parameters kept the same as those estimated with fishing.
Here, in contrast to Haltuch et al. (2019a), annual dynamic
SSB0 estimates were not averaged over estimation years.
The SSB0 estimate for the terminal year was compared to
terminal year SSB (SSBy −1 in eq. 6). These biomass reference
points were calculated within the MSE simulation from
the EM and applied annually to determine the total catch
according to eq. 6.

For all but the no catch and survey index-based HCRs, 1-
year forecast age 1+ biomass for the upcoming fishing year
from the EM was used in eq. 4 or 6 to derive catch advice as is
done in current management of the Pacific sardine subpopu-
lation (PFMC 2022; Fig. 1). In each recruitment scenario–HCR
combination, catch advice was implemented without error
and allocated to the fisheries based on the mean catch ratio
observed among the three fleets from 2006 to 2011. This pe-
riod was selected because the allocation scheme changed in
2006 from a regional to a seasonal allocation.

Performance metrics
We calculated 11 performance metrics over the 50-year

projection period that relate to fishery and conservation ob-
jectives (Table 3). To compare relative performance among
climate and non-climate change recruitment scenarios, we
pooled metrics across scenarios for each of these climate
categories. For consistency among HCRs, we use reference
points defined in the current sardine stock assessment for
calculating performance. Performance metrics related to
fishery objectives included median and SD of annual to-
tal catches, closure frequency, number of closures, and re-
building period length. For sardine stock status, we reported
the median annual stock biomass for age 1+ fish and older
and collapse frequency and severity (Siple et al. 2019). Cut-
off frequency also relates to conservation objectives: some
of the original motivation for the CUTOFF biomass was
to maintain minimum forage availability to predators. To
compare relative performance of each HCR with respect
to the baseline for each recruitment scenario, we calcu-
lated catch and stock biomass metrics relative to the mean
value within each recruitment scenario and across all iter-
ations and projection years. Lastly, we reported the EM er-
ror rate in the terminal (i.e., final) year of the assessment
with respect to two management thresholds. We summarized
the proportion of incorrect advice (from the EM) regarding
whether the stock size was below the cutoff threshold (age
1+ biomass <150 000 mt) and when it was below the col-

lapse threshold (age 1+ biomass <50 000 mt). We summed in-
stances where the EM estimated the population below the
cutoff (collapse) threshold, but the OM biomass was above
that threshold (false alarms), and the reverse where the EM
estimated higher population biomass, but the OM biomass
was below the cutoff (collapse) threshold (misses). Total error
was calculated as the sum of false positive (false alarms) and
false negative errors (misses) (Piet and Rice 2004).

Results

Simulation dynamics

OM and recruitment scenarios

Simulated northern Pacific sardine stock biomass
recovered quickly from its collapsed condition
(B2019 = 26 030 < 50 000 mt) at the beginning of the sim-
ulation in all recruitment scenarios (Fig. 2 for reference set
scenarios, see below for reference set definition). Under a no
catch strategy (NoCat), biomass in the majority of iterations
in all recruitment scenarios had recovered to levels greater
than 150 000 mt by 2025; however, 5% of all iterations had
not rebuilt above this threshold by 2032. With autocorre-
lated recruitment, biomass was above the 150 000 mt cutoff
threshold in 76.2% of all projection years (50 years ∗ 500
iterations), below the cutoff but above collapse in 15.8% of
projection years, and below the collapse threshold in 8.0% of
projection years (Fig. 2A). The cyclic PDO scenario exhibited a
more consistent increase in biomass through the projection
with a peak in 2056, mirroring the underlying 60-year PDO
cycle driving the scenario. Biomass in this scenario was
below the collapse threshold in 6.0% of projection years
and above the cutoff threshold in 86.0% of projection years.
The MICE and Future PDO scenarios had collapsed biomass
levels in 5.3% and 6.4% of projection years and biomass above
the cutoff threshold in 91.1% and 88.8% of projection years,
respectively. Across all scenarios, 2020–2029 had the highest
frequency of biomass below collapsed and cutoff thresholds,
although the frequency of biomass between 50 000 and
150 000 mt increased slightly in the 2050s for the MICE
scenario (0.6% of projection years) and in the 2040s for the
Future PDO scenario (2.9% of projection years).

In the autocorrelated recruitment scenario, recruitment
deviations were generally within one SD of the mean with a
few extreme peaks occurring in each iteration (e.g., Fig. 2B).
Recruitment deviations in both PDO scenarios were cen-
tered near zero (Future PDO: R̄PDOclim = 0.007; cyclic PDO:
R̄PDOcycl = 0.07). The recruitment deviations in the MICE
scenario were positively biased (R̄MICE = 0.39), indicative of
a climate-driven directional shift in recruitment. The re-
cruitment deviations in the regime and Future SST scenarios
were also positively biased (R̄Reg = 0.50 and R̄SST = 1.8, re-
spectively), though this was expected as these scenarios were
designed a priori to evaluate effects of this regime shift on
management outcomes. These positively biased recruitment
deviations in the regime and Future SST scenarios led to large
projected biomasses throughout the projection period (Fig.
S3). Biomass in these two scenarios exhibited two phases,
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Table 3. Description of performance metrics with intended objective.

Metric Description Equation Objective Reference

Cutoff frequency Number of years age 1+ biomass was below
the stock assessment cutoff (150 000 mt)
divided by simulation years

nAge1+<Cutoff
50 Minimize

Number of cutoff
events

Number of events that age 1+ biomass was
below the cutoff. An event is the first year of
a continuous set of years that biomass was
below the cutoff

Minimize

Closure frequency Proportion of years TAC = 0 Minimize

Rebuilding period
length

Number of years with age 1+ biomass below
the cutoff divided by the number of cutoff
events

nAge1+<Cutoff
nCutoff

Minimize Siple et al. (2019)

Collapse frequency Years age 1+ biomass was below the collapse
threshold (50 000 mt) divided by simulation
years

nAge1+<Collapse
50 Minimize

Collapse length Number of years with age 1+ biomass below
50 000 mt divided by the number of collapse
events

nAge1+<Collapse
nCollapse

Minimize

Collapse severity Relative depletion below the collapse
threshold, given the stock is collapsed

1− (Bcollapse/50 000) Minimize Siple et al. (2019)

Median age
1+ biomass

Median annual biomass of age classes 1 and
older over all simulation years

Maximize

Median catch Median annual catch over all simulation years Maximize

Catch variation Standard deviation of catches Minimize

Cutoff (collapse)
error rate

Sum of falsely identified cutoffs (collapses) and
missed cutoffs (collapses) in the terminal
assessment year divided by the number of
converged assessments

(FalsePos+FalseNeg)
Ngrad<0.01

Minimize Piet and Rice (2004)

Missed cutoff
(collapse) rate

Number of years in which a converged
terminal assessment estimated biomass as
above the cutoff (collapse) threshold, given
that stock biomass was actually below the
threshold, divided by number of years
biomass was below the cutoff (collapse)
threshold

nB̂>Cutoff |Cutoff , grad<0.01
nAge1+<Cutoff

Minimize Piet and Rice (2004)

Mean conditional
relative error

Mean of relative errors for terminal years for
which assessed age 1+ biomass was above
the cutoff (closure) threshold given that
stock biomass was actually below the
threshold

Minimize

Note: TAC, total allowable catch.

beginning with an early phase of consistently high biomass,
followed by a phase of unreasonably high biomass begin-
ning around 2045. Average biomass in both these scenarios
reached levels (>2 × 106 mt) beyond those estimated in the
recent historical period (1981–2019; Kuriyama pers. comm.),
as well as biomass estimates during the peak of the fishery
in the 1930s and 1940s (Clark and Marr 1955). We therefore
treat these as robustness scenarios (sensu Punt et al. 2016a)
and will not address their results here but include their
output in Figs. S3–S6. Thus, we identify the autocorrelated,
MICE, Future PDO, and cyclic PDO scenarios as our reference
set of scenarios for the remainder of this study.

Individual biomass trajectories showed realistic boom–
bust dynamics within an iteration (colored lines in Figs. 2A
and 3). Biomass declines were generally associated with peri-
ods of below-average recruitment (i.e., negative recruitment
deviations). Figure 3 depicts example trajectories of biomass
under the nine HCRs for an iteration in the MICE recruit-
ment scenario. Each trajectory was the product of a common

time series of recruitment deviations, an HCR strategy, and
random sampling error. In this example, biomass rebuilt be-
yond the cutoff threshold (topmost red line), peaked in 2039,
and declined below the closure threshold by the late 2050s,
even when no fishing occurred (NoCat in Fig. 3). Poor re-
cruitment (deviations <−1.25, indicated with black points in
Fig. 3) tended to precede biomass declines, and consecutive
years of poor recruitment drove biomass crashes or inhibited
recovery of the stock after a decline. Fishing strategies re-
duced biomass below unfished levels (Fig. 3), with some HCRs
driving biomass below cutoff or collapse thresholds (e.g., the
index-based (Index) and dynamic 40-10 (Dyn40-10) rules, re-
spectively).

EM fit

Each EM estimated a full trajectory of annual biomasses
from 2020 through a terminal year for the simulated stock
assessment (2069). Of the assessments with converging
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Fig. 6. Relative assessment error in each terminal (assessment) year of the Stock Synthesis estimation model for each reference
recruitment scenario under PFMCFSST. Individual boxplots represent error between the assessment estimate of age 1+ biomass
for that year and the operating model biomass across iterations. In each plot, the center horizontal bar is the median, hinges
represent the 25% and 75% quartiles, and whiskers are the upper and lower 95% confidence intervals.

EMs, relative error in the terminal assessment year (i.e.,
biomass estimated for the year in which the assessment
was simulated) was consistently negatively biased (Fig. 6).
The negative bias in relative error was reduced toward zero
(median >−20%) after the first 15 years of the projection.
The negative bias in the terminal assessment year was less
extreme when age 1+ biomass was below the 150 000 mt
management limit or when recruitment was below 1 SD of
the historical recruitment distribution (Fig. 7). In contrast,
the CCES index-based biomass estimates, which used sim-
ulated acoustic-trawl survey data from the preceding year
with error, tended to be positively biased and had higher
variation than estimates derived from the EM assessment
model (Fig. 7). Though the relative error in an individual
recruitment scenario/HCR combination varied, these trends
in assessment bias were consistent across scenarios and
HCRs. See Figs. S7–S13 for further model diagnostics.

Harvest control rule performance

Fishery and stock status

Our interest here was to compare performance of the HCRs
under the climate change (Future PDO and MICE) and no cli-
mate change (autocorrelated and cyclic PDO) recruitment sce-
narios (Table 1) to assess whether management was robust to
all potential hypotheses of future climate-driven shifts in re-
cruitment. Therefore, we report aggregate metrics for each
HCR with results pooled among our two reference recruit-
ment scenario sets, and we present scenario-specific metrics
in Tables S2–S4 and Figs. S14–S26. Compared to variation in
performance among scenarios, the median trends in perfor-
mance were similar among HCRs overall. In the results be-
low, we report patterns in median performance among HCRs
for each metric. Complete statistics of performance metric
distributions are reported in Table S5. Where contrasts exist,
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Fig. 7. Relative assessment error in the terminal (assessment) year of the Stock Synthesis estimation model over reference
recruitment scenarios and iterations for assessment years with high (recruitment deviation >1.25, green), average (−1.25 < de-
viation < 1.25, white), or poor (deviation <−1.25, yellow) recruitment. Terminal year relative error in assessment years with
operating model (OM) biomass above the cutoff threshold (age1+ biomass >150 000 mt) is in the top row, and relative errors
for assessment years with OM biomass below the cutoff threshold are in the bottom row. Note that for the Index HCR, there
is no assessment and errors are calculated from the most recent CCES index value.

we highlight performance at the 5th or 95th percentile for
maximized or minimized metrics, respectively, to emphasize
the risk of unfavored outcomes when recruitment drivers are
unknown.

In the absence of fishing (NoCat), many performance met-
rics had more favorable outcomes under the climate change
scenarios than in the no climate scenario group (Figs. 8 and
9). This included higher median relative age 1+ biomass (cli-
mate: 1.06, no climate: 0.972; Table S5), lower median fre-
quency of being below the cutoff threshold (climate: 0.100;
no climate: 0.160), and shorter average rebuilding times (cli-
mate: 4 years; no climate: 5 years). Note that even under
favorable climate conditions and no fishing, the simulated
stock has a low but nonzero chance of declining below the
cutoff and collapse thresholds (e.g., median frequency of age
1+ biomass <50 000 mt was 0.060 under a no catch HCR).

There was a clear tradeoff between the median biomass
and median catch performance metrics (Figs. 8 and S15). The
PFMCF018 rule had the highest fishery closure biomass limit
(biomass below which E = 0), and was thus the most conser-
vative. Indeed, PFMCF018 performed best among HCRs for
biomass conservation under both climate scenarios; the me-

dian age 1+ biomass relative to the mean for the scenario
was 0.825 and 0.781 for climate and no climate scenario
groups, respectively. Yet, this strategy resulted in the lowest
median catch relative to the scenario mean for both scenario
groups (climate: 0.682; no climate: 0.532). In contrast, the
current SST-based HCR (PFMCFSST) had the lowest median
relative age 1+ biomass (climate: 0.672; no climate: 0.645)
and the highest median relative catch (climate: 1.11; no cli-
mate: 0.827). Similarly, the HCR with constant harvest below
the MAXCAT limit (ConstF) had low age 1+ biomass perfor-
mance (median with and without climate signals: 0.719 and
0.635, respectively), with the highest risk of low biomass lev-
els in both climate scenario groups (5th percentiles: 0.0400
and 0.0348 for climate and no climate, respectively), but
high relative catch (median with and without climate sig-
nals: 0.977 and 0.899, respectively). Likewise, both Pikitch
and DynPik rules, which had a higher threshold and fishery
closure biomass than the 40-10 HCRs, performed better than
the 40-10 HCRs in terms of biomass but not catch. Unlike for
other HCRs, the biomass–catch tradeoff was less clear-cut for
the index-based HCR (Index), which applied the PFMCF018 to
CCES index data rather than EM output. This HCR had lower
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Fig. 8. Annual age 1+ biomass (left) and catch (right) relative to the mean within each reference recruitment scenario: no
climate scenario set (autocorrelated and cyclic PDO) in darker colors and climate scenario set (MICE and Future PDO) in lighter
colors. The horizontal bar indicates the median value and whiskers are the central 95th percentiles among samples for each
metric.

median relative age 1+ biomass (climate: 0.713; no climate:
0.675) but also low median relative catches (climate: 0.757;
no climate: 0.573).

The PFMCF018 rule also performed well for the other
fishery-related performance metrics (Fig. 9). It was among
the best performing HCRs in terms of the median cutoff fre-
quency, number of cutoff events, and mean collapse length
under both climate change and non-climate change scenar-
ios. The PFMCF018 HCR also had the lowest risk of age
1+ biomass falling below the cutoff threshold (95th per-
centile of cutoff frequency with and without climate change:
0.220 and 0.540, respectively). However, this came at the cost
of a higher frequency of fishery closures than the constant
exploitation (ConstF) or broken stick HCRs. The PFMCFSST
HCR was the only rule that had a varying target exploitation
rate, which contributed to high values of catch variation un-
der this rule (median climate catch SD: 68 722 mt; no climate:
67 930 mt). This HCR performed generally well for the other
performance metrics (Fig. 9) and had short rebuilding lengths
(climate: 3.5 years; no climate: 4.5 years) and highest median
catches of all HCRs in climate change scenarios (1.11), despite
having the highest frequency of fishery closure (Fig. 9G). The

Index HCR had the second highest catch variation (median
catch SD with and without climate change: 61 325 and 57 819
mt, respectively) and had the highest median frequency of
fishery closures together with the PFMCFSST rule (climate:
0.14; no climate: 0.24 for each HCR).

Both the equilibrium and dynamic B0 applications of the
Pikitch rule performed moderately well (Figs. 8 and 9). The
original Pikitch rule (Pikitch) performed similarly to the in-
dex rule in both climate change and no climate change
contexts, except for the relative catch metric, which was
higher than many other HCRs (median relative catch with
and without climate change: 0.988 and 0.912, respectively).
The dynamic B0 Pikitch rule (DynPik) had the second highest
median relative biomass (climate: 0.794, no climate: 0.719;
Fig. 8). These two HCRs also had lower closure frequencies
and lower catch SD compared to the PFMC rules and per-
formed better than the 40-10 rules in metrics related to stock
biomass. The DynPik rule had fewer closures, number of cut-
offs, and instances when biomass <150 000 mt than the equi-
librium Pikitch rule but had longer rebuilding length (Fig. 9).

With no cutoff, the constant exploitation HCR (ConstF) per-
formed well in terms of catch (Fig. 8) but was among the
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Fig. 9. Boxplots of fishery cutoff (A and F), collapse (B, C, and D), closure (G), rebuilding (E), and catch variability (H) performance
metrics are aggregated across years and iterations of the reference recruitment scenarios: no climate scenario set (autocorre-
lated and cyclic PDO) in darker colors and climate scenario set (MICE and Future PDO) in lighter colors. The horizontal bar
indicates the median values and whiskers are central 95th percentiles among samples for each metric.

worst performing HCRs for the remaining performance met-
rics, particularly under a no climate change assumption (e.g.,
median cutoff frequency: 0.26; median collapse frequency:
0.08; median average rebuilding length: 5.25 years). The equi-
librium and dynamic B0 40-10 HCRs (40-10 and Dyn40-10)
also generally performed poorly, grouping with the ConstF
rule (Figs. 8 and 9). These rules resulted in high catches
and low catch variation, largely because they allowed low
levels of catch at small stock sizes rather than closing the
fishery. The equilibrium 40-10 rule rarely closed the fishery
(closure frequency of 0.02), whereas the dynamic 40-10 rule
(Dyn40-10) never closed the fishery completely (Fig. 9G). The
40-10 HCRs had higher risk of collapses, cutoff events, in-
stances of biomass below 150 000 mt, longer and more se-
vere collapses, and longer rebuilding times (95th percentiles
in no climate change scenarios: ≥4, ≥0.6, ≥0.26, ≥0.525, ≥6,
and ≥14 years, respectively) than other HCRs except for the
constant exploitation rule. The dynamic 40-10 rule (Dyn40-

10) performed as poorly as the ConstF rule for cutoff (cli-
mate: 0.34; no climate: 0.70) and collapse frequencies (cli-
mate: 0.38; no climate: 0.12). This rule also had poor perfor-
mance for collapse severity (climate: 0.537; no climate: 0.547)
and rebuilding length metrics (climate: 8 years; no climate:
18 years).

Cutoff and collapse detection

Overall, our simulated management advice——regarding
whether stock size was above or below cutoff and collapse
levels——had relatively low error rates. The total error rate for
identifying biomass below the cutoff threshold ranged from
1.4% to 6.4%. Total error rate for identifying biomass below
the collapse threshold ranged from 0.7% to 2.7% (Figs. 10A
and 10D). These error rates were higher under an autocorre-
lated recruitment scenario and lowest in the scenario with
recruitment determined by the MICE ecosystem model.
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Fig. 10. Terminal error rates with respect to the cutoff (top row) or collapse (bottom row) thresholds for each HCR and recruit-
ment scenario. The first column (A and D) depicts total errors (Type I and Type II errors), the middle column (B and E) shows
error rates for misidentified (missed) cutoffs or collapses, and the right column (C and F) shows the mean relative error of
biomass estimates (percentage) conditioned on years when an assessment (or CCES index biomass) misidentified a cutoff or
collapse. Note each panel uses a different y-axis scale.

Perhaps, the most critical management advice relates to
the (EM) assessment of stock status in years for which the
“true” (OM) age 1+ biomass was below the cutoff threshold.
In these years, the average false negative error rate, or rate of
misidentifying that stock was below the cutoff, ranged from
0.5% to 3.8% for the HCRs using biomass estimates from the
EM model (Fig. 10B). The relative magnitude of these errors,
conditioned on biomasses below the threshold, was quite
small (<0.1% mean relative error, Fig. 10C). In contrast, the In-
dex HCR that used the CCES index data for decision-making
had higher mean error rates (11.5%–18.0%), an order of magni-
tude larger than the assessment-based HCRs, with mean rel-
ative error in the magnitude of estimated biomass between
1% and 2% (Fig. 10C). This is consistent with the higher ter-
minal year error when applying the Index HCR (Fig. 7). These
same patterns existed for errors measured around the col-
lapse threshold, though some HCRs (PFMCF018, PFMCFSST,
Pikitch, and DynPik) never missed a biomass collapse under
the MICE, cyclic PDO, and (or) Future PDO recruitment sce-
narios (i.e., false negative rates were 0; Fig. 10E). These false
negative error rates occurred between 18.0% and 19.6% of the
projection years for the index-based HCR, though the magni-
tude of these biomass estimate errors were smaller than in
the case of the cutoff threshold (0.64%–0.73%; Fig. 10F). The

full contingency tables for cutoff and collapse thresholds are
included in Tables S6 and S7.

Discussion
Through MSE, we tested the robustness of the PFMC’s SST-

based sardine HCR, along with alternatives, to recruitment
variability, including climate-driven scenarios. Results were
largely consistent across climate change and non-climate
change scenarios. For instance, the HCR that performed
best under the climate change scenarios in terms of the
biomass also performed best for biomass in the no climate
change runs. All HCRs performed better under the climate
change scenarios as the climate-driven recruitment projec-
tions implied a more productive stock. No HCR performed
best across all performance indicators as tradeoffs were evi-
dent between catch and biomass metrics. Threshold harvest
control rules fishing at EMSY (PFMCF018) or linked to SST (PFM-
CFSST) and a dynamic B0 implementation of Pikitch et al.’s
(2012) rule (DynPik) performed the best based on maximiz-
ing stock biomass, catch, or reducing catch variation, respec-
tively. Taken together, these HCRs had the following charac-
teristics: (1) a higher stock biomass limit under which fishery
closures preserved reproductive potential at low biomass, (2)
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use of a statistical stock assessment model to reduce estima-
tion error, and (3) dynamic response either to latent states
estimated by a stock assessment model or to environmental
variables external to the assessment. Because performance
varied more among recruitment scenarios (climate versus no
climate recruitment scenario sets) than among HCRs, our
MSE also suggests that, along with regular monitoring and as-
sessment, management success may depend more on under-
standing and modeling drivers of climate-driven changes in
recruitment dynamics than on refining HCR functional form.

The review by Deroba and Bence (2008), summarized in
Fig. 4, helps to interpret differences in performance between
the HCRs tested here and to compare our results to those
from the MSE of Hurtado-Ferro and Punt (2014), on which
the current SST-based HCR was based. In their study, Hurtado-
Ferro and Punt (2014) contrast performance of HCRs that (1)
use either constant or variable Etarget rates, and if variable,
what range these rates were allowed to vary over, (2) the in-
fluence of a maximum catch cap, and (3) the level of Blimit

(i.e., CUTOFF), which was implemented as a threshold HCR
and set equal to Btrigger. The HCR implemented in the PFMC
fishery management plan for Pacific sardine (PFMCFSST in
this study) is a threshold HCR with Blimit = Btrigger = 150 000
mt, and has a maximum catch cap and a variable Etarget based
on SST. Our study highlights the value of a well-selected Blimit

and the influences of dynamic reference points (e.g., environ-
mentally informed Etarget or dynamic B0), which are features
of the HCRs implemented in the present study.

The current SST-based HCR (PFMCFSST) consistently de-
livered higher catches over the 50-year simulation with the
tradeoff of having lower stock biomass, higher catch varia-
tion, and more frequent closures compared to an HCR with
a stationary Etarget of EMSY. Higher catch variation under the
SST-based HCR was likely due to the combination of varying
target harvest levels that allow higher catch rates at warm
temperatures and to smaller stock sizes on average leading
to more frequent fishery closures compared to the stationary
EMSY rule. As in our analysis, Hurtado-Ferro and Punt’s (2014)
original MSE for this stock found that there was no best
performing HCR due to tradeoffs between management ob-
jectives. The temperature-informed HCR (their variant 6) and
a stationary Etarget HCR (their variant 18) performed decently
for both mean catch and mean age 1+ biomass performance
metrics. The tradeoffs between these metrics for these HCRs
were reversed in their analysis, but the differences were not
as great as we saw in this study. Further, the rank order of
these and a constant exploitation HCR (their variant 4) was
similar to the corresponding HCRs in this study (ConstF)
for metrics on variation in catch and frequency of falling
below the 150 000 mt cutoff threshold (Hurtado-Ferro and
Punt 2014). It should be noted that unlike in this study,
their SST Etarget was capped at 0.15 and a broader range of
implementation and biological uncertainties was tested. This
suggests that the MSE approach used here to compare HCR
performance can identify rules that lie at extremes of trade-
off frontiers, but that finer differentiation of performance
between similar HCRs is likely influenced by uncertainties
resulting from model structure decisions made when defin-
ing OM and HCR implementation scenarios in the analyses.

Therefore, any management decisions about the HCRs eval-
uated here should be based on further modeling accounting
for model structural sensitivities as was done before selecting
the current PFMC HCR (Hurtado-Ferro and Punt 2014).

In contrast to the PFMC sardine HCRs, the Pikitch et al.
(2012) rule resulted in moderate performance across all met-
rics investigated in our analysis. This may be due to the
shape of this rule compared to the PFMC rules. In the equi-
librium Pikitch case, the closure threshold (Blimit = B0 ∗
0.4 ≈ 125 500 mt) was slightly lower than the 150 000 mt
closure limit of the PFMC rules and the trigger biomass
(Btrigger = B0 ∗ 0.8 ≈ 251 000 mt) began reducing fishing pres-
sure at much higher biomass levels. This gradual reduction of
exploitation rate at higher biomasses helped conserve more
spawning biomass, particularly when recruitment was poor,
thus reducing variation in catch by avoiding large changes in
biomass and consequently avoiding fishery closure more of-
ten than the cliff’s-edge style PFMC rules. In particular, the dy-
namic Pikitch rule (DynPik) exhibited relatively high biomass
and catch, with low catch variation and collapse and closure
frequencies across all our reference recruitment scenarios.
When using a dynamic B0 reference point, the level of ex-
ploitation is based on current reproductive capacity of the
stock. Thus, the dynamic B0 HCR reduced the frequency of
both closures and cutoffs as compared to the equilibrium B0

rule. This supports other studies suggesting that using ref-
erence points with respect to a dynamic B0 may improve
fishery performance under time-varying productivity rela-
tive to static reference points for some species (Berger 2019;
O’Leary et al. 2020; Bessell-Browne et al. 2022). Although the
dynamic Pikitch rule does not perform best for most met-
rics, it may reduce the distinct fishery versus conservation
tradeoffs demonstrated in the PFMC HCRs, leading to suf-
ficient outcomes overall. Our results also mirror Berger’s
(2019) findings that recruitment dynamics may swamp dis-
tinctions between dynamic or equilibrium B0 performance,
as differences in performance metrics among the dynamic
and equilibrium Pikitch HCRs investigated here shrank in
our climate-influenced recruitment scenarios compared to
our no climate change scenarios.

The remaining HCRs generally grouped together and had
poor performance for more than one performance metric.
Fishing at a constant harvest rate below the maximum catch
limit (ConstF) resulted in the highest risk of crossing cutoff
and collapse thresholds and led to delayed rebuilding of the
stock. Siple et al. (2019) also highlight that, for forage fish,
low constant exploitation rules, while enhancing stability
and catch metrics, increased risk of collapse. The 40-10 rule
had similarly poor performance because of a low closure
threshold (Blimit = B0 ∗ 0.1 ≈ 31 400 mt) and of Btrigger below
the biomass that the current PFMC HCR closes the fish-
ery (Btrigger = B0 ∗ 0.4 ≈ 125 500 < 150 000 mt). Because of
the low reference points applied in this study, neither the
equilibrium or dynamic 40-10 rules implemented fishery
closures regularly and thus acted similarly to the constant
exploitation HCR. Also, distinctions in performance of the
dynamic versus equilibrium 40-10 rule implementations
cannot be easily determined as the reference points were
rarely triggered. Although Siple et al. (2019) do not apply
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the 40-10 rule as done here, they test a rule with the same
Blimit = 0.1B0 and a higher Btrigger = 0.8B0 (corresponding to
our Pikitch rule Btrigger) and found it improved performance
over the standard Pikitch rule for some metrics. Thus, early
reduction of harvest rates in a broken-stick rule with a high
Btrigger may allow use of a lower Blimit than threshold rules,
but further MSE explicitly testing the effects of placement of
Blimit with the same Btrigger is needed to explore this further.

Unique among the HCRs, the index-based application of
the stationary EMSY HCR (Index) had much higher relative er-
ror rates, leading to a failure to detect 10% of the cases when
the stock was below the cutoff threshold. Considering the
successful use of index-based HCRs in other small pelagics
fisheries (e.g., South Africa and Peru), we provide a discussion
of caveats related to our application of this approach in the
present study. We note that the root of poor performance
for this strategy stems from observation error applied to
the CCES biomass index, which is not reduced through an
assessment. Catch guidance for our Index HCR is based on
survey data sampled a year before the beginning of the new
TAC year, reflecting current sampling limitations for this
stock (Fig. 1). By contrast, fisheries that have implemented
an index-based decision rule base their catch levels off pre-
season surveys that reflect more recent stock status than the
CCES index simulated here (e.g., South Africa’s sardine and
anchovy; de Moor 2018). Application of this type of strategy
in the California Current would be challenging given the
timelines for when surveys are conducted and when catch
limits are set according to the PFMC process. Further, we
implemented a consistent 25% CV log-normal error around
our CCES index throughout our simulation, compared to
summer survey CVs greater than 30% used in the PFMC stock
assessment (Kuriyama et al. 2020). Future investigations
into an index-based approach might increase CV values as
biomass decreases. When sardine abundance is low, distribu-
tion becomes patchy, resulting in higher CVs. For example,
in the recent northern Pacific sardine stock assessment, one
CCES index observation had a biomass estimate of 751 075
mt with a CV of 0.09 and another value had a biomass of
16 375 with a CV of 0.94 (Kuriyama et al. 2020). Thus, future
MSE analyses investigating the influence on survey index
timing and effects of density-dependent sampling error may
provide a more realistic characterization of the sampling
process and risks to providing advice for management.

This final insight reveals how the error structure of an
assessment can affect its performance in providing man-
agement advice. Because of limited computing resources,
previous MSEs in this and other systems have often sampled
population biomass with error, resulting in a biomass index
(similar to a fishery-independent survey) rather than passing
sampled data to an EM (e.g., Hurtado-Ferro and Punt 2014;
Punt et al. 2016b; Siple et al. 2019). With our approach using
the SSMSE package and fitting a Stock Synthesis model
to the simulated data, we revealed that the simplifying
approach of accounting for assessment error by adding a
random error to the biomass output from the OM may miss
important error patterns and bias in the assessment that
impact management advice and thus the effectiveness of the
HCR applied. With the full assessment approach afforded by

SSMSE, we showed that the biomass estimates in the final
year of the assessment were negatively biased. We note that
the negative bias pattern in age 1+ biomass estimates for the
terminal year for our study (Fig. 6), and from a survey index
(positive, Fig. 6) is case-specific and more simulation studies
are needed to understand the sources and broader implica-
tions of biomass estimation bias. We suspect that negatively
biased terminal year biomass estimates are tied to the highly
uncertain recruitment estimates for the last years of the
EM, which in turn are dependent on the timing of available
observations relative to the terminal year, availability of
young-of-the-year sardine to the survey and fisheries, the
assumed constant CCES index CV discussed above, and the
observation error assumed for age and length compositions.
For instance, due to the lack of information on recent recruit-
ment in the data, terminal year EM recruitment estimates
are highly uncertain with a mean close to the average from
the stock recruitment relationship. This leads to large bias
in terminal recruitment estimates from the EM as compared
to the OM, which is particularly evident and negative during
years of high recruitment (Fig. S8). We suspect that this bias
in the most recent recruitment estimates from the EM is
associated with the negative bias in age 1+ biomass. Support
for this argument may be found in the lack of bias in the
age 1+ biomass estimate for the first projection year (2020,
Fig. 6), which relies on the final year of observations included
in the conditioning period and is not yet affected by errors in
the estimation of the 2020–2069 simulated recruitment devi-
ations. However, for a full evaluation of causes of bias and its
relationship to EM model formulation and data availability,
we would need to conduct further simulations with different
data input combinations that were out of the scope of the
current work. This estimation bias had consequences for the
HCRs that then used these estimates to advise management,
which were different from those taken from advice that
is generally unbiased overall but less certain (i.e., wider
confidence intervals). This negative biomass bias in the final
assessment year also led to more precautionary catch advice
in simulations using this output, leading to threshold detec-
tion error rates that were imbalanced between false positives
and false negatives for these HCRs. Our methods allowed us
not only to measure the effectiveness of the management
strategies applied in our MSE, but also the effectiveness
of the assessment model itself. We encourage the use of
these and other innovative tools to explore these questions
further.

The EM in this study represented a simplification of the
stock assessment used for management (and likely the
variability in multiple biological processes). These simplifi-
cations were used because the focus here was to evaluate
the performance of HCRs under different future recruitment
scenarios. There is likely time-varying growth and movement
for sardine (McDaniel et al. 2016; Kamimura et al. 2022). The
management assessment accounts for this with empirical
weight-at-age input and by estimating time-varying age-based
selectivity. The relationship of warming temperatures and
other future environmental conditions between growth and
movements is unknown, and as a result was not the focus of
the analysis here.
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This simulation approach could be expanded to allow di-
rect evaluation of the benefit to management of recruitment
indicators for improving assessment biomass estimates and
short-term forecasting of fisheries activities. The poorer
performance of our lagged Index HCR is not surprising
given the highly variable dynamics of this stock. Accurate
estimates of the fishable biomass are a persistent need for
effective management of forage fish. As described above,
in many systems, this has been addressed by developing an
adaptive management framework where catch guidance is
revised multiple times per year based on frequent, direct
estimates of biomass from hydroacoustic surveys (de Moor
and Butterworth 2016; Uriarte et al. 2023). In lieu of observa-
tions, indicators of recruitment can also provide a timelier
estimate of incoming age 0 biomass and input as an addi-
tional survey index in the assessment to improve quality of
biomass estimates (e.g., Crone et al. 2019). Performance of an
assessment that uses environmental or other survey data as a
recruitment index could be evaluated using the methods we
apply here. Alternatively, as for the Pacific sardine PFMC HCR
or Irish Sea herring (Bentley et al. 2021), reference points in
the HCR itself (e.g., Etarget) can be linked to an indicator to
ensure catch limits track the productivity of the stock. Fur-
thermore, as a TAC is often based on an estimate of forecast
(rather than current) biomass, for these fast-growing species,
management outcomes can be improved when the indicator
is accurately forecast in advance and both the reference
point and biomass forecast reflect near-term recruitment
conditions (Tommasi et al. 2017).

Success of indicator-based rules is predicated on a good
understanding of and strong relationship between recruit-
ment and environmental drivers (Haltuch et al. 2019b). A
direct SST–recruitment relationship was not included in
our reference set of scenarios as the Future SST scenario
resulted in unreasonably high biomass levels. The link to
recruitment assumed in this scenario was based on the
linear effect of temperature on recruitment used to develop
the PFMC’s SST-based HCR (PFMC 2013; Hurtado-Ferro and
Punt 2014). However, the downscaled earth system models
project higher future temperatures than have been observed
during the calibration period of this relationship. An im-
proved Future SST scenario could thus enforce a limit on
the positive linear SST–recruitment relationship as would be
implemented in a shape-constrained thermal niche species
distribution model approach (Citores et al. 2020; Muhling
et al. 2020). Increased stock productivity was also simulated
in the regime recruitment scenario, which added a positive
scalar to recruitment deviations. Because small pelagic fish
stock dynamics are highly sensitive to the formulation of
the stock–recruit relationship, this simple modification
may not have provided a reasonable depiction of dynamics
under a positive recruitment regime and led to unreasonably
high biomass levels. We note that we also tested a negative
recruitment regime scenario where recruitment deviations
were simulated to decrease rather than increase from the
initial recruitment regime. However, many HCRs in this
negative recruitment regime scenario minimally achieved
management objectives (see Tables S4 and S5). We found that

use of recruitment deviations derived from a mechanistic
model that explicitly incorporates multiple processes and
drivers affecting recruitment, our MICE recruitment scenario
(Koenigstein et al. 2022), is a promising approach to generate
more realistic scenarios of recruitment under climate change
for MSE than those derived from correlative methods.

Temperature did indirectly inform the climate-driven PDO
recruitment (PDO is based on North Pacific SST) and MICE
model recruitment scenarios (in the MICE, recruitment is de-
pendent on SST as well as food availability; Koenigstein et al.
2022). Because of the positive relationship between tempera-
ture (and forage) and recruitment in these scenarios, biomass
was projected to increase under climate change, increasing
the performance of all HCRs in this set of scenarios. We note
that this assumption may not hold in the natural system,
which is more complex than that modeled here. For sardine,
the SST–recruitment relationship through PDO is changing
(Zwolinski and Demer 2019), and high ocean temperatures
may impact plankton production, reducing forage for larval
and juvenile sardines (Gómez-Ocampo et al. 2018; Brodeur et
al. 2019; Koenigstein et al. 2022). In all scenarios, the PFMCF-
SST rule performed best in terms of catches, but worse than
the corresponding stationary Etarget rule (PFMCF018) in most
other metrics. The ability to increase catches during favor-
able periods came at the cost of higher catch variability and
increased frequency of fishery closures. If (or when) new re-
cruitment indices become available for these highly dynamic
stocks, future studies can use the tool developed here to eval-
uate their value for management decision-making and near-
term stock forecasting.

This MSE framework allowed us to investigate the dynam-
ics between forage fish population dynamics and fisheries
management. The model dynamics we report here reflect the
patterns found in natural fish stocks and support the con-
clusions of Essington et al. (2015) and Szuwalski and Hilborn
(2015) that forage fish stock declines are preceded by years
of poor recruitment and can be exacerbated by fishing mor-
tality. With this framework, single species approaches for
ecosystem-based fishery management can be developed and
tested in the statistically rigorous manner with which fish-
eries managers are familiar while accounting for the wider
ecosystem influences that drive small pelagic fishes.
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