The potential impact of a shifting Pacific sardine distribution on U.S. West Coast landings

James Smith, SWFSC La Jolla james.smith@noaa.gov

Projecting Landings

Projecting Landings

Projecting Landings

The best way to interpret our analysis:

Whatever the future landings will be, *this* is the impact that ocean change and the subsequent redistribution of sardine will have on those landings

- 1. Model sardine habitat suitability (SDM)
- 2. Relate the habitat suitability near port to observed monthly sardine landings (landings GAM), while accounting for landings of other CPS, sardine price etc
- 3. Project the sardine habitat out to 2100, using ESM climate projections
- 4. Input this future habitat into landings GAM to calculate landings to 2100, while using a 'reference period' to input the other information
- 5. Use a simulation to allow the fishery to close dynamically based on projected landings (i.e. the ACL is fixed, but how quickly that ACL is reached depends on future habitat)

Step 1. Model sardine habitat

MUHLING ET AL.: DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM CalCOFI Rep., Vol. 60, 2019

DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM

BARBARA MUHLING, STEPHANIE BRODIE, OWYN SNODGRASS, DESIREE TOMMASI

University of California, Santa Cruz Institute for Marine Science Santa Cruz, CA ph: (858) 546-7197 Barbara.Muhling@noaa.gov

BARBARA MUHLING, OWYN SNODGRASS, HEIDI DEWAR, DESIREE TOMMASI, JOHN CHILDERS

NOAA Southwest Fisheries Science Center San Diego, CA

STEPHANIE BRODIE, MICHAEL JACOX NOAA Southwest Fisheries Science Center Monterey, CA MICHAEL JACOX NOAA Earth System Research Laboratory Boulder, CO

CHRISTOPHER A. EDWARDS

Ocean Sciences Department University of California, Santa Cruz, CA

YI XU

Department of Fisheries and Oceans Delta, British Columbia, Canada

STEPHANIE SNYDER

Thomas More University, Crestview Hills, KY

Step 2. Relate sardine habitat to landings

Step 3. Project sardine habitat out to 2100

- This shows the mean change in sardine habitat suitability, as the change from 2000-15 to 2040-55
- Green indicates an increase in habitat suitability, and red a decrease

Step 4. Input future habitat into landings model

- This shows the projected change in habitat suitability near each port (SDM60)
- This is inputted into the landings GAM

Step 5. Results

- This shows the range of landings expected in each year, based on habitat suitability near port, with everything else from the 2000-15 period
- The linear trend is due to change in habitat suitability only
- The relative (%) change in this trend is the key result

Step 5. Results

- Landings increase in the north, decrease in the south
- Total landings can do down (20%), go up (10%), or go up and then down

Month

Sardine 3 ways – benefits and limitations

	SDM-Landings	IBM	MICE
Benefits	 SDMs are robust for long term projection Avoids projecting sardine abundance or management Explores interplay of fishery constraints (e.g. other species, quota allocation) 	 Mechanistic understanding of bottom up effects on population dynamics Represents age structure and early life stages explicitly Includes growth, mortality, reproduction, behavior explicitly 	 Age-structured population dynamics Environmental driving of biological processes Fine time-step (1 week) Fast run-time Uncertainty and sensitivity analyses
Limitations	 Estimates only relative change in landings (%) Uses correlative models, so less insight into processes and assumes past correlations persist Doesn't yet propagate all uncertainty through to results 	 Typically underestimates observed variability Calibration of many biological parameters can be time intensive Population dynamics can be overly sensitive to early life mortality 	 Coarse/simplified spatial resolution No individual-level processes No detailed fleets/ports (yet?)

Sardine 3 ways – results summary

	SDM / landings	IBM	MICE
Sardine distribution	Northward shift (Nth subpop)	Northward shift	Northward shift (rule-based forcing)
Biomass trends	Does not project sardine biomass	Multi-decadal variability in adult biomass; periods of higher biomass in 2000-20 and 2080- 2100, lower in 2040-60	General increasing trend in biomass; interannual variability same or higher; more biomass and uncertainty for HAD & IPSL
Total catch trends	Increases (IPSL), decreases (HAD), or increases then decreases (GFDL) [to 2080]	Follows trend of biomass	Follows trend of biomass
Catch distribution	Increase in the north, decrease in the south	Increase in the north, decrease in the south (GFDL) and central (HAD, ISPL)	Catches not resolved at region/port level
Main drivers	Temperature and Chl; seasonal ACL allocation; timing of other CPS	Temperature through increased early life survival; Prey availability through reproductive output	Temperature, prey availability